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We consider a model inspired by a metal break junction hypothetically caught at its breaking point, where
the nonadiabatic center-of-mass motion of the bridging atom can be treated as a two-level system. By means
of numerical renormalization group �NRG� we calculate the influence of the two-level system on the ballistic
conductance across the bridge atom. The results are shown to be fully consistent with a conformal field theory
treatment. We find that the conductance calculated by coupling Fermi-liquid theory to our NRG is always finite
and fractional at zero temperature but drops quite fast as the temperature increases.
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I. INTRODUCTION

A number of transport measurements on organic and in-
organic molecules bridged between metallic leads has re-
cently succeeded in revealing signatures of the molecular
vibrational and motional degrees of freedom in the inelastic
tunneling spectrum and raised interesting theoretical issues.
Most notably, since in these nanosized devices the time
scales of the nuclear dynamics may be comparable to those
involved in the electron tunneling, nonadiabatic quantum ef-
fects become not negligible. This question has been the sub-
ject of extensive theoretical activity over the past years,
mostly concerned with the vibrational effects, for which we
refer to a recent review1 and to references therein. The role
of the center-of-mass oscillations of a bridging site between
the two leads has been well addressed mainly via generalized
master equations in the context of nanoelectromechanical
quantum-shuttle devices. On the contrary, the low-
temperature quantum-coherent regime has been only slightly
touched and with rather controversial results. For instance,
Al–Hassanieh et al.2 made use of exact diagonalization pro-
cedure supplemented by a Dyson-equation embedding to
conclude that conductance should be suppressed in reso-
nance conditions for arbitrary coupling strength between the
center-of-mass motion and the hybridization with the leads
and both at finite and vanishing charging energies. This re-
sult was questioned by Mravlje et al.3 who found, by a varia-
tional procedure and for finite charging energy, that the
center-of-mass motion does not affect perfect transmission at
resonance.

In this paper we address the same class of questions, con-
cerning the role of the center-of-mass motion at low tem-
perature, in a different type of systems, namely, metallic
break junctions �BJ�.4 In a BJ the metal bridge or neck, ini-
tially forming a single solid body strongly bonded with the
leads, is mechanically broken apart typically at criogenic
temperatures. The conductance drops, prior to breaking, typi-
cally take place through a sequence of plateaus correspond-
ing to thinning of the neck, down the ultimate monatomic
contact, whose conductance is of the order of the conduc-
tance quantum G0=2e2 /h, where e and h are the electron

charge and Planck’s constant, respectively. These plateaus
are interpreted in terms of ballistic conductance which, in the
adiabatic Landauer-Buettiker linear-response theory,5,6 is
controlled by the few residual one-electron conduction chan-
nels and by their respective transmittivity. The moment when
the left and the right leads are separating, the physical bridge
between the two is, as a rule, a single metal atom as indicated
by the last conductance plateau.4 Here, nonadiabatic effects
could in principle be caught right at the moment of separa-
tion. The bridge atom, initially strongly attached to both
leads, eventually detaches from one of them to remain after
separation exclusively attached to the other. In the process,
the atom coordinate will move for a while in a double-well
effective potential. Therefore, between the initial solid metal-
metal nanocontact, held together by a strong bond and with
electrical properties governed by ordinary ballistic conduc-
tance, and the broken contact, there is a room for a transient
state where a new regime involving double-well tunneling
may be relevant. As the double well initially develops out of
a flat single well, the two well minima can �to a good accu-
racy� be considered equivalent; moreover, the barrier sepa-
rating them is initially very weak, which calls for quantum
tunneling even when the atom mass is not small. A schematic
sketch of this system is shown in Fig. 1. If the mechanical
breaking takes place slowly enough in time, the dynamics of
the bridge atom nucleus tunneling in the double well may be
approximated by that of a two-level system �TLS�, whereas
the electronic level of the bridge atom, assumed to be non-
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FIG. 1. �Color online� Sketch of a mechanical break
junction.
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degenerate, gives rise to a resonant electronic level.
Within these assumptions, the physics might be assimi-

lated to that of conduction electrons scattering off TLSs in
bulk metals proposed by Vladar and Zawadowski7 as a pos-
sible realization of a two-channel Kondo �2CK� model.8 This
idea recurred several times in recent years in the context of a
variety of phenomena in metals9–14 although again rather
controversial. According to Aleiner et al.,15 in fact, the ap-
propriate high-energy cutoff of a TLS coupled to conduction
electrons is not the electron bandwidth but rather the oscil-
lation frequency within each potential well since above this
energy the conduction electrons follow adiabatically the mo-
tion of the atom. Since the Kondo temperature TK is typically
exponentially smaller than the high-energy cutoff, the con-
clusion of Aleiner et al. is that TK is too small to be relevant.
The BJ problem proposes now a new interesting physical
situation which we treat here in a slightly different model,
arriving at interesting conclusions about the zero-
temperature conductance and its temperature evolution.

By means of the numerical renormalization group
�NRG�,16 we calculate the influence of the two-level system
on the ballistic conductance across the bridge atom. We find
that the zero-temperature zero-voltage conductance is always
finite and fractional. However it is found to drop quite fast to
zero as the temperature increases.

The paper is organized as follows. In Sec. II we introduce
the model Hamiltonian and discuss the parameters chosen. In
Sec. III we first solve some limiting cases by mean of ana-
lytical methods. In Sec. IV we study the low-energy proper-
ties of our model by mean of NRG. We show that conformal
field theory �CFT� provides a strikingly direct interpretation
of the low-lying spectrum obtained by NRG. In Sec. V by
using both our NRG routine and a Fermi-liquid theory we
give an estimate of the conductance of our model. In Sec. VI
we finally summarize and comment our results.

II. MODEL HAMILTONIAN

The physics and language of our model is inspired by a
bridge atom suspended between two one-dimensional metal-
lic leads moving quantum mechanically in a symmetric
double-well potential, although the model could be equally
describing other pseudospin variables coupled to a ballistic
conductance channel. As a simplification we will assume that
the dynamics of the atom nuclear coordinate is that of a TLS.

Indeed, we neglect the role of the excited states of the
double well, which has been analyzed in detail in Ref. 15 in
a slightly different model.

We introduce a pseudospin variable �z identifying the at-
om’s positions �z=1 and −1 when the atom is in the mini-
mum close to the right �R� and left �L� lead, respectively.
With this definition, assuming the bridge atom wave function
to be real,7 the quantum tunneling operator between the two
wells corresponds to the Pauli matrix �x.

The right and left metal leads are modeled as semi-infinite
chains �site label n=1, . . . ,�� with nearest-neighbor hop-
ping, amplitude −t, and creation �annihilation� operators c�n�

†

�c�n��, where �=R,L and the spin �= ↑ ,↓. The bridge atom
is endowed with a single nondegenerate electronic orbital

�the bridge level� and with creation and annihilation opera-
tors d�

† and d�, respectively, constituting the ballistic con-
ducting channel. The electron hopping amplitude from the
leads to the bridge level is assumed to depend explicitly on
�z. When the atom is in the right well ��z= +1�, the level is
more coupled to the R chain with amplitude −t0�1+��, where
0���1 than to the L chain with amplitude −t0�1−�� and
vice versa when the atom is in the left well ��z=−1�. There-
fore the model Hamiltonian reads

H0 = − t �
�=R,L

�
�

�
n=1

�

c�n�
† c�n+1� + H.c. − t0�

�

�1 + ��z�

��cR1�
† d� + H.c.� − t0�

�

�1 − ��z��cL1�
† d� + H.c.�

− �x�x − Vx�x�
�

d�
†d�. �1�

The last term represents the electron-assisted tunneling of
the bridge atomic nucleus arising from the influence of the
atom’s state of charge on the height of the barrier of the
double-well tunneling potential.7 In principle this type of as-
sisted tunneling process includes other possible operators
that couple the bridge level and the nuclear pseudospin co-
ordinate provided that �given our assumption of a symmetric
double well and equivalent leads� they are equal even under
reflection with respect to the center of the double well �we
will call this even parity�. The last term in Eq. �1� is therefore
just one of the operators that presumably might possess a
large matrix element involving the bridge level charge occu-
pancy. In later calculations below we will actually consider
more general assisted tunneling operators too. The electron-
electron interaction is neglected here.

One can note at the outset that model �1� is closely related
to a 2CK model with the role of the spin being played by the
lead labels R and L for the conduction electrons and by the
pseudospin �� that identifies the TLS, while the role of the
silent channels is played by the real spin �. An alternative
way of writing Eq. �1�, which may be convenient in some
cases, is by introducing the even �e� and odd �o� combina-
tions

cen+1� =�1

2
�cRn� + cLn�� , �2�

con� =�1

2
�cRn� − cLn�� , �3�

and formally defining

ce1� = d�

through which the model �1� is rewritten as
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H = − t �
�=e,o

�
�

�
n=1

�

c�n�
† c�n+1� + H.c. − �Ve − t�

��
�

�ce1�
† ce2� + H.c.� − Vo�z�

�

�co1�
† ce1� + H.c.�

− Vx�x�
�

�ce1�
† ce1� − 	co1�

† co1� + 
ce2�
† ce2�� − �x�x,

�4�

where

Ve = �2t0, Vo = �2t0� . �5�

In H of Eq. �4� we in fact included additional assisted
tunneling operators with coupling constants parametrized by

 and 	, which are missing in Eq. �1�. In the even-odd for-
mulation, the analogy with a 2CK model is much more ex-
plicit especially once we rotate the pseudospin by � /2
around the y axis with even e and odd o labels playing the
role of spin up �⇑� and down �⇓�. A similar model was re-
cently proposed by Zarand17 in the context of TLSs in met-
als. According to him the presence of the resonant level may
push the equivalent 2CK model into a strong-coupling re-
gime with a large Kondo temperature of the same order as
the high-energy cutoff.18 For comparison, we may also write
the conventional two-channel flavor-Kondo model �after a
� /2 rotation around the y axis of the flavor pseudospin�

H2CK = − t �
�=e,o

�
�

�
n=1

�

c�n�
† c�n+1� + H.c. + Jx�xT1

z + Jy�yT1
y

− Jz�zT1
x , �6�

where

Tn
a =

1

2 �
��=e,o

�
�

c�n�
† ���

a c�n�, �7�

are the local generators of the flavor SU�2� with �a as the
Pauli matrices.

Our model H in Eq. �4� differs from the anisotropic 2CK
model �6� since:

�1� the even �⇑� chain has one more site than the odd one
�⇓�,

�2� in the even �⇑� chain the hopping between sites 1 and
2 differs from the others, and

�3� a local magnetic field �x acts on the pseudospin.
In addition, Vx in Eq. �4� is generally coupled to an op-

erator more complicated than T1
z unlike Jx in Eq. �6�. This

difference has no effect when �x=0. In that case our model
�4� will display the conventional 2CK behavior but plays an
important role when a finite �x drives the model away from
the 2CK fixed point. Specifically, we found that models with
different 	 and 
 in Eq. �4� may fall into two different
classes:

�i� if 
=0 and 	=1, the assisted tunneling term Vx�x in
Eq. �4� is proportional to T1

z or, more generally, if

	 = 1 + 
 , �8�

then an intermediate 2CK crossover regime should survive in
the presence of a small but finite �x and

�ii� if Eq. �8� is not satisfied, then this crossover regime is
likely to be absent for any �x�0. In this case the model with
	=
=0 can be taken as representative of all the others.

We note that the condition �8� means simply that the as-
sisted tunneling operator

�
�

ce1�
† ce1� − 	co1�

† co1� + 
ce2�
† ce2�

is orthogonal to the local charge density

�
�

ce1�
† ce1� + co1�

† co1� + ce2�
† ce2�

= �
�

d�
†d� + cR1�

† cR1� + cL1�
† cL1�.

The fact that such a property discriminates between two
quite distinct classes of behaviors suggests that the charge
degrees of freedom play, in this problem, an active role un-
like in conventional Kondo models as we are going to dis-
cuss in what follows.

III. PRELIMINARY ANALYSIS OF THE MODEL

Simplifying the double-well dynamics of the bridge atom
to a TLS form permits a numerical analysis of the original
model H0 �1�. We performed an analysis by means of the
numerical renormalization group16 and the results will be
presented and discussed later. Prior to doing this we can,
exploiting the analogy with a 2CK problem, discuss first
some instructive limiting cases of Eq. �1� that can be easily
understood.

First, if �x=Vx=0 the model describes a conventional
electron hopping across the bridge level with inequivalent
leads because of ��0. In particular, for any value of �z, the
zero-temperature differential conductance in units of G0
=2e2 /h is readily found to be19

G

G0
=

1 − �2

1 + �2 . �9�

If �=0 with finite �x and Vx, it is more convenient to use
the even-odd representation in which the conductance is

G

G0
= sin2�e − o� , �10�

where e and o are the phase shifts at the chemical potential
in the even and odd channels, respectively, determined by
coupling of the leads to the bridge level. By solving the
one-dimensional scattering problem and choosing for sim-
plicity 
=	=0, we find that

e =
�

2
+

tVx

2t0
2 �x,

o = 0,

so that
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G

G0
=

4t0
4

4t0
4 + t2Vx

2 �11�

is always finite.

A. Asymptotic solution for strong electron-nucleus coupling:
�=1

The parameter � in Eq. �1� measures the strength of
“electron-phonon” coupling between the bridge atom and the
leads. When the bridge atom double well is tiny, the two
minima are close and � will be small; in a wide double well,
with the bridge atom very close to either R or L lead, � will
be large �while �x will correspondingly be small�. The upper
limit for � is �=1, when the bridge atom in the left �right�
only couples well to the left �right� lead. As it turns out, this
limit is interesting by itself.

Since the bare electron hopping t0 is of the order of elec-
tron volt, which is many orders of magnitude larger than
both �x and Vx, one can safely treat the latter terms pertur-
batively within the path-integral formalism originally devel-
oped by Yuval and Anderson20 and by Hamann21 for the
single-channel Kondo and Anderson-impurity models, re-
spectively. This approach had in turn been built by extending
the Nozières-De Dominicis solution22 of the x-ray edge sin-
gularity to a succession of emission-absorption processes. In
our problem, because of the presence of the silent spin-
channel and of the bridge level, it is necessary to resort to a
multichannel extension of the Anderson-Yuval
formalism,23,24 where the perturbation expansion consists of
a series of pseudospin flips induced by the operator �x. What
is important in the calculation is the phase-shift difference
suffered by each channel at any pseudospin flip. In the
present case the most convenient representation is in terms of
R and L leads. We do not present details of the calculations
since as it turns out the final result can be inferred by very
simple arguments. Because as was said when �=1 and �z=
+1, only the R lead is hybridized with the level, while the L
lead is untouched. R acquires a phase shift R

+ =� /2, corre-
sponding to a resonant-level model, while for the left lead L,
L

+ =0. Vice versa, for �z=−1, it is only the L lead that is
coupled; hence, R

− =0 while L
− =� /2. Therefore the phase-

shift differences in the pseudospin flip from �z=−1 to +1 are
R=R

+ −R
− =� /2 and L=L

+ −L
− =−� /2 for each spin �,

which here plays the role of a silent channel. This is exactly
the location of the so-called Emery-Kivelson point,25 which
also coincides with the intermediate coupling fixed point of
the 2CK model.24,26 Interesting enough, this situation should
also correspond to the maximum Kondo temperature
attainable,18 confirming Zarand’s expectation.17 We find that,
at equilibrium, the perturbative expansion of the partition
function coincides with that of the generalized resonant-level
model

H� = H0�� f,�sf� − �x�2v
�

�� f
†�0�f + f†� f�0��

− Vx�2v
�

�f† − f���sf
† �0� + �sf�0�� , �12�

where �=4t0
2 / t is the hybridization width of the d level,

which plays the role of the high-energy cutoff and
H0�� f ,�sf� is the continuum limit of a noninteracting Hamil-
tonian on a closed chain for two different chiral Fermi fields
� f�x� and �sf�x� that move with Fermi velocity v,25 namely,

H0�� f,�sf� = iv �
a=f ,sf

� dx �a
†�x��x�a�x� ,

and, finally, f and f† are the annihilation and creation opera-
tors of an auxiliary fermion satisfying f†f −1 /2=�z.

Here we labeled the fields following Emery and
Kivelson25 to stress the fact that the role of spin s �here the
real spin �� and of flavor f �here the R and L leads� are
interchanged in our model with respect to the conventional
2CK model.

Unlike the Emery-Kivelson Hamiltonian25 for the 2CK
model, in our case, a pseudospin field �x is present, which
spoils the anomalous 2CK behavior.27 For any finite �x, the
spectrum of the Hamiltonian �12� is Fermi-liquid-type, cor-
responding in fact to a 2CK model in the presence of a mag-
netic field applied to the impurity—a case studied by Affleck
et al.26 We further note that the original Hamiltonian �4� is
invariant under a generalized parity operator

P = �x�− 1�No, �13�

where No is the total number of electrons in the odd channel.
Since a Fermi-liquid spectrum implies that the TLS �the
Kondo impurity� asymptotically dissolves into the conduc-
tion bath, it follows that the value on each state of the gen-
eralized parity operator �13� turns effectively into the
“Fermi-liquid” parity �−1�No. This observation implies a
zero-bias conductance dictated by the form �10� in the low-
energy spectrum.

We conclude by briefly discussing the other limit �x=0,
when the bridge atom is so heavy, or the barrier so large, that
the double-well tunneling is suppressed. Here the model
flows to the 2CK fixed point, and here it is well known that
the elastic-scattering S matrix at the chemical potential is
zero.28 Since the even and odd channels in our model corre-
spond to the spin-up and -down channels in the 2CK prob-
lem, both have vanishing S matrix; hence, the conductance is
zero. For an infinitesimally small magnetic field acting on
the impurity spin, it was shown in Ref. 26 that a Fermi-liquid
behavior is recovered with a phase-shift difference of � /2
between the two spin channels. The translation of this result
in our case is not so straightforward since, in the absence of
any coupling to the TLS, i.e., Vo=Vx=0, the even and odd
phase shifts are finite unlike the conventional 2CK. Actually,
since the even chain has one more site, the “bare” phase-shift
difference is already � /2. One possibility appears to be that
the � /2 phase-shift difference acquired by switching on an
infinitesimal �x at the 2CK fixed point adds to the bare value
to give a total difference of zero modulo �. This would im-
ply zero conductance for �x�Vx, raising to nonzero by in-
creasing �x. We shall see that this is actually what happens if
Eq. �8� is satisfied, namely, if the assisted tunneling does not
involve charge degrees of freedom. In the opposite case, the
conductance behavior is more complicated.
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IV. NUMERICAL RESULTS

We address the spectrum of the model Hamiltonian H of
Eq. �4� by standard NRG,16 whose results we are going to
present in this section. Tentative values of the Hamiltonian
parameters which we adopted are a conduction bandwidth
2D0�2 eV, the attempt frequency D�10−2 eV,15,17 Ve
	Vo�0.2 eV, and Vx	�x�10−3Ve. As discussed previ-
ously, only the conduction electrons with energy smaller than
the attempt frequency are involved in the pseudospin screen-
ing. In order to enforce this condition, we take a flat
conduction-electron density of states of bandwidth 2 eV �the
chemical potential is zero�, but we assume that only the con-
duction electrons with energy −D���D are coupled to the
local degrees of freedom. Consequently, we perform the
NRG procedure only on these electrons, which amounts to
assume an effective bandwidth 2D�2�10−2 eV, yet with a
flat density of states equal to the original one, namely,
0.5 eV−1=0.5�10−2 /D. Using the attempt frequency D as
our energy unit, the net result in the Wilson chain16 is a
renormalization of

Ve�o� →� D

D0
Ve�o� =

Ve�o�

�DD0

D = 2,

which keeps the d-level hybridization width at the chemical
potential invariant, while Vx and �x rescale trivially into
themselves,

Vx →
Vx

D
D, �x →

�x

D
D ,

implying Vx	�x�10−2Ve,
29 which are the values we as-

sume throughout. Moreover, to better identify each state of
the spectrum, in the numerical calculations, we implemented
the spin SU�2� symmetry, the charge U�1� symmetry and the
discrete parity defined by Eq. �13�.

Following the discussion of Sec. II, we ran NRG calcula-
tions for the two different implementations of the electron-
charge-assisted tunneling, i.e., case �i�, in which Eq. �8�
holds with 
=0 and 	=1 and case �ii� with 
=	=0. In Fig.
2 we show the NRG flow for the Hamiltonian in Eq. �4� for
both cases �i� and �ii� above with �x=0 and with Ve=Vo=2
and Vx=10−2Ve. The energy of the lowest-lying eigenvalues

is plotted as a function of the number N of NRG iterations
corresponding to an energy �temperature� scale �N=D�−N/2

where � is the Wilson discretization parameter �we hence-
forth set �=2�. At large N, the spacing between the levels,
their degeneracy and the disappearance of any difference be-
tween even and odd iterations N �see for instance Ref. 27�, is
typical of a 2CK. These results are summarized in Table I
and are consistent with the conformal field theory
prediction30,31 for the 2CK.

The numerical results clearly show that, whatever the
form of electron-assisted tunneling is, the system has a 2CK
behavior at low temperatures. The Kondo temperature TK is
conventionally estimated as D�−�Nc−1�/2 with Nc as the NRG
iteration at which, e.g., the first-excited state is 10% off its
asymptotic value.18,27 We find that, while cases �i� and �ii�
have roughly the same Nc, the latter is strongly influenced by
Vo /Ve. In particular Vo /Ve	1, namely, �	1 is an optimal
choice that minimizes Nc�25 consistently with the previous
analysis and corresponds to a temperature of few hundredths
of a Kelvin. Remarkably, even and odd iterations are hardly
distinguishable after very few iterations. That seems to be a
property of the 2CK model right at its fixed point, the fixed
point with the highest TK�D,18,27 which would imply that
the above estimate of TK is a strong underestimation of the
real one. However, we cannot exclude the possibility that the
even-odd collapse of the energy levels might simply indicate
a preliminary crossover to a regime where the effects of Ve
and Vo are fully established while those of Vx are still negli-
gible.

We note that, although the level spacings and degenera-
cies are those of the conventional 2CK model �6�, the quan-
tum numbers of each eigenvalue differ substantially from
that model. In the flavor 2CK model, labeling states with Q
and S and the flavor T �see Eq. �7��, one expects the lowest-
energy spectrum of Table II. This spectrum is determined
within conformal field theory30,31 by the so-called fusion of
the free-electron spectrum, top in Table II, with the flavor
primary field with T=1 /2.

TABLE I. Lowest-energy NRG spectrum of the Hamiltonian H
of Eq. �4� for �x=0. The energies E�NRG� are given in units of the
fundamental level spacing and compared with the conformal field
theory prediction E�CFT�. For each eigenvalue we indicate its de-
generacy �deg� together with its quantum numbers Q �charge�, S
�spin�, and parity P defined in Eq. �13�.

E�CFT� E�NRG� Q S P Deg

0 0.0000 −1 0 −1 1

0 0.0000 1 0 1 1

1/8 0.1246 0 1/2 �1 4

1/2 0.4999 +1 0 −1 2

1/2 0.4999 −1 0 +1 2

1/2 0.4999 +1 1 +1 3

1/2 0.4999 −1 1 −1 3

5/8 0.6290 0 1/2 �1 4

5/8 0.6290 �2 1/2 �1 8

1 1.0230 −1 1 +1 6

1 1.0230 1 1 −1 6

0 10 20 30 40
N

0

0.5

1

E
/D

Odd-iter.
Even-iter.

0 10 20 30 40
N

Odd-iter.
Even-iter.

E
(C

FT
)

0

1/8

1/2

5/8

1

9/8

(-1,0,1) (1,0,-1)

(0,1/2,±1)

(±1,0,±1)

(0,1/2,±1) (±2,1/2,±1)

(±1,1,±1)
ii)i)

FIG. 2. NRG flow of lowest eigenvalues for the model in Eq. �4�
with �x=0. Case �i� is analyzed in the left panel and case �ii� in the
right one.
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By contrast, we found that the NRG spectrum, Table I,
can be obtained starting from the 2CK one in Table II in the
following way:

�1� First we decompose the flavor SU�2�→U�1��Z2,
where U�1� stands for the free bosonic theory that represents
the z component of the flavor field and Z2 is an Ising confor-
mal field theory �see Sec.18.5 in Ref. 32�. This decomposi-
tion leads to the spectrum in Table III.33

�2� Next we shift the charge Q and z component of the
flavor Tz by +1.33 This corresponds to the fact that the even
chain has one more site. In this way we obtain the spectrum
in Table IV which coincides with that one in Table I includ-
ing the degeneracy of each eigenvalue.

We note that, if we recombine the charge U�1� with the
Ising to form an isospin �charge� SU�2� theory, the spectrum
becomes equal to the conventional 2CK one in Table II with
the role of Q played by Tz and that of T played by the
isospin. In other words, it seems that, although the original
model is not invariant under isospin SU�2� symmetry, the
fixed point does in fact recover that symmetry. This unex-

pected result is confirmed by the spectrum calculated during
the renormalization-group procedure. Indeed, after very few
iterations, the ground state becomes and stays for all
N�1 doubly degenerate with quantum numbers �Q ,S�
= �+1,0� , �−1,0�.

The above observation also clarifies why the charge de-
grees of freedom play an important role once �x is turned on.
As said, a finite �x is equivalent in the 2CK language to a
magnetic field on the impurity site, which is known to be a
relevant symmetry-breaking perturbation destroying the
anomalous 2CK behavior.26 Indeed, we find that, as soon as
�x�0, the spectrum flows to a Fermi-liquid one that can be
interpreted as independent even and odd electron channels
suffering from different phase shifts e and o.

In Fig. 3 we show the NRG flow of the low-energy spec-
trum for �x=10−4Vx for the two cases �i� and �ii�. The
asymptotic spectrum can be straightforwardly interpreted us-
ing the single-particle spectrum of Fig. 4 and combining all
possible single excitations. In particular, we find that, for
very small �x�Vx, e−o=0 for case �i� and e−o=� /4 for
case �ii�. A difference between the two cases is apparent also
in the way they approach to the asymptotic behavior. In fact,
for the same values of �x�Vx, a crossover region with a
�x=0 spectrum is still visible in case �i� but not at all in case
�ii� �see Fig. 3�. This different low-energy behavior has its
counterpart on the conductance behavior as will be discussed
in Sec. V.

TABLE II. Lowest-energy spectrum of the 2CK model �6� for
Va=0 �top table� and Va�0 �bottom table� as expected by confor-
mal field theory.

E�CFT� Q S T Deg

0 0 0 0 1

1/2 �1 1/2 1/2 4

1 0 1 1 9

1 �2 1 0 6

1 �2 0 1 6

E�CFT� Q S T Deg

0 0 0 1/2 2

1/8 �1 1/2 0 2

1/2 0 1 1/2 6

1/2 �2 0 1/2 4

5/8 �1 1/2 1 12

1 �2 1 1/2 12

TABLE III. Lowest-energy spectrum of the 2CK model upon
decomposing the flavor SU�2� into U�1��Z2. Tz is the quantum
number that defines the U�1� theory, while Z2 corresponds to the
coset theory, which is an Ising one.

E�CFT� Q S Tz Z2

0 0 0 �1 �

1/8 �1 1/2 0 I

1/2 0 1 �1 �

1/2 �2 0 �1 �

5/8 �1 1/2 0 �

5/8 �1 1/2 �2 I

1 �2 1 �1 �

9/8 �1 1/2 �2 �

TABLE IV. Lowest-energy spectrum obtained from the one in
Table III upon shifting Q and Tz by +1.

E�CFT� Q S Tz Z2

0 �1 0 0 �

1/8 0 1/2 �1 I

1/2 �1 1 0 �

1/2 �1 0 �2 �

5/8 �2 1/2 �1 I

5/8 0 1/2 �1 �

1 �1 1 �2 �

9/8 �2 1/2 �1 �

0 20 40 60
N

0

0.5

1

E
/D

0 20 40 60
N

i) ii)

FIG. 3. NRG flow of the lowest eigenvalues for the model in
Eq. �4� with �x=10−4Vx. Case �i� in left panel and case �ii� in right
panel. Even and odd iterations correspond to solid and dashed lines,
respectively.
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We conclude this part by emphasizing that for realistic
�x	Vx no crossover is visible in the spectrum, which might
suggest the absence of any intermediate temperature regime
dominated by the singular behavior of the 2CK fixed point.
However, this statement should be taken with caution since,
as discussed above, the flow, even at �x=0, is quite atypical
and does not allow for a precise determination of TK. Indeed,
for �x�0, it remains true that the spectra of even and odd
iterations collapse very fast. However, unlike the case �x
=0, the levels at even and odd iterations with equal energy
have opposite charge Q and parity P. This compares well
with the role of a local magnetic field in the 2CK at its fixed
point. Levels at even and odd iterations with opposite spin
quantum number Sz collapse.27 Therefore, although we tend
to believe that the above estimate of TK�10−4D is correct,
we cannot exclude that the actual value could be much
larger.

V. CONDUCTANCE

We mentioned earlier that the zero-bias conductance in
the 2CK state �x=0 is zero because the scattering matrix of
both the even and the odd channels is zero.28 For finite �x,
the recovery of Fermi-liquid behavior allows us to estimate
the conductance by the difference e−o �see Eq. �10��,
which can be extracted by the spectrum, for instance by cal-
culating the energy difference between the two lowest-
energy states with �Q ,S , P�= �0,1 /2,1� and �0,1 /2,−1� in
units of the level spacing,

e − o = ��E�0,1/2,1� − E�0,1/2,−1�� .

These two energies correspond to the cost of adding an even
electron �Q ,S , P�= �0,1 /2,1� or an odd one �Q ,S , P�
= �0,1 /2,−1� to the ground state, which has quantum num-
bers �−1,0 ,1�, see Fig. 4.

We calculate this phase shift, and hence the zero-bias con-
ductance, as a function of the temperature T �extracted from
the NRG iterations� for different values of the ratio �x /Vx.
We note however that, while we are quite confident about the
values at low temperatures, those at high temperatures must
be taken with caution since the spectrum is still far from a
Fermi-liquid one. The results are shown in the top panels of
Fig. 5 for case �i� and case �ii� and realistic values of
�x /Vx�1 �red-bold curves�. In both cases there is a signifi-
cant thermal crossover with very small conductance before
the asymptotic low-temperature regime is reached. At zero
temperature, the conductance is zero if �x=0. However, as
soon as an infinitesimal �x is turned on, the zero-temperature
conductance stays zero in case �i� but jumps to G0 /2 in case
�ii� �see bottom panels of Fig. 5�. For realistic values of �x
	Vx, the zero-temperature conductance is in all cases finite,
G��0.5–0.9�G0, and smaller than the unitary value.

VI. DISCUSSION AND CONCLUSIONS

In summary, we have discussed the influence in the trans-
port across a bridge atom of its quantum-mechanical center-
of-mass motion, whose dynamics in the double-well case is
approximated as a two-level system.7 In this regime, the two
equilibrium positions of the bridge atom play the role of a
pseudospin, whose dynamics is influenced by the electron
hopping from the contacts into its valence orbital. This real-
izes effectively the same physics of a magnetic atom or a
quantum dot bridging between two leads with the role of
spin played by the position of the atom and the real spin
playing the role of an additional flavor index. It is speculated
that this hypothetical situation might be applicable to a metal
break junction caught right at the breaking point when the
central atom bridging the two contacts develops, although for
a very short time interval, a double-well potential before col-
lapsing finally onto one of the two.

E

0

even odd

(0, 1/2, +1) (0, 1/2, −1)

δ o δ e

FIG. 4. �Color online� Graphical representation of the Fermi-
liquid spectrum for �x�0. The even �odd� single-particle energy
levels are equidistant; however, the even spectrum is shifted with
respect to the odd one. The ground state is obtained by filling each
level below the chemical potential, E=0 in the figure, and has quan-
tum numbers �Q ,S , P�= �−1,0 , +1�. All possible excitations can be
generated by combining single-particle excitations. We show for
instance the two lowest-energy excitations that amounts to adding
one electron either even �0,1 /2, +1� or odd �0,1 /2,−1�, which we
use to evaluate the phase-shift difference e−o.
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FIG. 5. �Color online� Top panels: Conductance in units of the
conductance quantum G0 as a function of temperature for different
values of �x /Vx�1 for case �i� �left panel� and �ii� �right panel�.
Bottom panels: Zero-temperature conductance as a function of the
ratio �x /Vx for cases �i� �left panel� and �ii� �right panel�.
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We find that, as long as the atom can tunnel between the
two contacts, the zero-bias conductance at zero temperature
is finite, although smaller than its value in the solid metal-
metal nanocontact, with a single well for the bridge atom.
This finite conductance seems at variance with the earlier
result by Al–Hassanieh et al.2 according to which the zero-
temperature conductance at resonance should vanish at zero
bias when the center-of-mass motion modulates the hopping
amplitude into the leads. The discrepancy might be due to
our two-level-system approximation or, more likely, to the
different low-energy accuracy of NRG with respect to the
numerical technique employed by Al–Hassanieh et al.2 In-
deed, we find that the finite-temperature conductance, which
should correspond to the effective zero-temperature value
obtained with less low-energy accuracy, decreases quite rap-
idly toward zero with increasing temperature.

In the limiting �and unrealistic� case of a vanishing spon-
taneous tunneling �x=0, in spite of a finite-assisted one Vx
�0, the model displays a two-channel-Kondo behavior again
with vanishing zero-temperature conductance. For finite �x
�Vx, the zero-temperature conductance is found either to
remain zero or to jump to 1/2 of the unitary limit �the con-
ductance quantum� G=0.5G0=e2 /h depending on the form
of the assisted tunneling. On the contrary, for realistic
values of �x	Vx, the conductance is always finite, G
��0.5–0.9�G0.

In break junctions it is very difficult to apply gate voltages
to change the energy of the atomic orbital. Indeed the large
amount of metal around the contacted object and the large
distance to the substrate give rise to an almost complete
screening of the gate electric field. However, assuming that a
gate voltage could be applied, we find that its role is very
critical at low temperatures. Depending on whether the sign

of the voltage gate is positive or negative, the conductance is
strongly enhanced or suppressed. However in both cases, by
raising the temperature, the conductance goes to zero.

A critical aspect of the model is that, with the realistic
parameters used, distinct signatures of the two-level-system
dynamics could be hard to observe at temperatures around 4
K, which is commonly used in metal break junction
experiments.4 Even harder could be the detection of possible
manifestations of two-channel-Kondo anomalies. Cooling to
lower temperature would offer the possibility to observe
these effects. Time-resolved conductance experiments could
show the tunneling regime as a transient just before breaking
and a coherent Kondo-type regime could be reached for
light-mass shuttling centers, for instance hydrogen atoms or
molecules moving onto and into mechanically controllable
break junctions �see, e.g., Refs. 34–36�. In that case, the
conductance plateaus found below the unitary limit could be
ascribable to the two-level-system dynamics similar to that
found in our model �see Fig. 5�, which is now shifted to
higher-temperature scales. A possible realization could be a
metal contact bridged by a malone aldehyde molecule, where
a hydrogen bond is known to shuttle quantum mechanically
between two equivalent positions.37
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